Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011639

RESUMO

Here, we report the mechanochemical synthesis and characterization of homoleptic uranium and lanthanide phosphinodiboranates with isopropyl and ethyl substituents attached to phosphorus. M(H3BPiPr2BH3)3 complexes with M = U, Nd, Sm, Tb, and Er were prepared by ball milling UI3(THF)4, SmBr3, or MI3 with three equivalents of K(H3BPiPr2BH3). M(H3BPEt2BH3)3 with M = U and Nd were prepared similarly using K(H3BPEt2BH3), and the complexes were purified by extraction and crystallization from Et2O or CH2Cl2. Single-crystal XRD studies revealed that all five M(H3BPiPr2BH3)3 crystallize as dimers, despite the significant differences in metal radii across the series. In contrast, Nd(H3BPEt2BH3)3 with smaller ethyl substituents crystallized as a coordination polymer. Crystals of U(H3BPEt2BH3)3 were not suitable for structural analysis, but crystals of U(H3BPMe2BH3)3 isolated in low yield by solution methods were isostructural with Nd(H3BPEt2BH3)3. 1H and 11B NMR studies in C6D6 revealed that all of the complexes form mixtures of monomer and oligomers when dissolved, and the extent of oligomerization was highly dependent on metal radius and phosphorus substituent size. A comprehensive analysis of all structurally characterized uranium and lanthanide phosphinodiboranate complexes reported to date, including those with larger Ph and tBu substituents, revealed that the degree of oligomerization in solution can be correlated to differences in B-P-B angles obtained from single-crystal XRD studies. Density functional theory calculations, which included structural optimizations in combination with conformational searches using tight binding methods, replicated the general experimental trends and revealed free energy differences that account for the different solution and solid-state structures. Collectively, these results reveal how steric changes to phosphorus substituents significantly removed from metal coordination sites can have a significant influence on solution speciation, deoligomerization energies, and the solid-state structure of homoleptic phosphinodiboranate complexes containing trivalent f-metals.

2.
J Am Chem Soc ; 144(51): 23572-23584, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36521036

RESUMO

The design of facile synthetic routes to well-defined block copolymers (BCPs) from direct polymerization of one-pot comonomer mixtures, rather than traditional sequential additions, is both fundamentally and technologically important. Such synthetic methodologies often leverage relative monomer reactivity toward propagating species exclusively and therefore are rather limited in monomer scope and control over copolymer structure. The recently developed compounded sequence control (CSC) by Lewis pair polymerization (LPP) utilizes synergistically both thermodynamic (Keq) and kinetic (kp) differentiation to precisely control BCP sequences and suppress tapering and misincorporation errors. Here, we present an in-depth study of CSC by LPP, focusing on the complex interplay of the fundamental Keq and kp parameters, which enable the unique ability of CSC-LPP to precisely control comonomer sequences across a variety of polar vinyl monomer classes. Individual Lewis acid equilibrium and polymerization rate parameters of a range of commercially relevant monomers were experimentally quantified, computationally validated, and rationalized. These values allowed for the judicious design of copolymerizations which probed multiple hypotheses regarding the constructive vs conflicting nature of the relationship between Keq and kp biases, which arise during CSC-LPP of comonomer mixtures. These relationships were thoroughly explored and directly correlated with resultant copolymer microstructures. Several examples of higher-order BCPs are presented, further demonstrating the potential for materials innovation offered by this methodology.


Assuntos
Ácidos de Lewis , Polímeros , Polimerização , Polímeros/química , Termodinâmica
3.
Angew Chem Int Ed Engl ; 61(45): e202211145, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36097137

RESUMO

Qualitative differences in the reactivity of trivalent lanthanide and actinide complexes have long been attributed to differences in covalent metal-ligand bonding, but there are few examples where thermodynamic aspects of this relationship have been quantified, especially with U3+ and in the absence of competing variables. Here we report a series of dimeric phosphinodiboranate complexes with trivalent f-metals that show how shorter-than-expected U-B distances indicative of increased covalency give rise to measurable differences in solution deoligomerization reactivity when compared to isostructural complexes with similarly sized lanthanides. These results, which are in excellent agreement with supporting DFT and QTAIM calculations, afford rare experimental evidence concerning the measured effect of variations in metal-ligand covalency on the reactivity of trivalent uranium and lanthanide complexes.

5.
Inorg Chem ; 59(1): 48-61, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31469552

RESUMO

In this Forum Article, we review the development of chelating borohydride ligands called aminodiboranates (H3BNR2BH3-) and phosphinodiboranates (H3BPR2BH3-) for the synthesis of trivalent f-element complexes. The advantages and history of using mechanochemistry to prepare molecular borohydride complexes are described along with new results demonstrating the mechanochemical synthesis of M2(H3BPtBu2BH3)6, where M = U, Nd, Tb, Er, and Lu (1-5). Multinuclear NMR, IR, and single-crystal X-ray diffraction data are reported for 1-5 alongside complementary density functional theory calculations to reveal differences in their structure and reactivity with and without tetrahydrofuran. The results demonstrate how mechanochemistry can be used to access f-element complexes with chelating borohydrides in improved and reproducible yields, which is an important step toward investigating the properties of lanthanide and actinide phosphinodiboranate complexes with different phosphorus substituents. The relevance of these results is contextualized by a discussion of structural factors known to influence the volatility of f-element borohydrides and applications that require the development of volatile f-element complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...